CONTRIBUTION OF KNOWLEDGE-INTENSIVE SERVICES TO ECONOMIC GROWTH

Yumiko KINOSHITA
Graduate School of Interdisciplinary Information Studies, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
Email: yumiko.k@iii.u-tokyo.ac.jp

Abstract

In today's economy, the service sectors comprise $65-75 \%$ of the economy in most advanced countries; however, fewer empirical and statistical studies have been performed with regard to the service sectors than manufacturing sectors to verify their impact on economic growth. In line with a recent trend in which services are becoming more knowledge-intensive, this paper focuses on Knowledge-intensive Service (KIS) activities, which produce and integrate existing service activities, and enhance knowledge production. The effect of KIS on macroeconomic indicators is examined in a Real Business Cycle (RBC) model with multiple regression analysis and simulation. According to these analyses, it is revealed that the trend of investment into KIS has a strong correlation with aggregate output and consumption, government expenditures, capital stock, and productivity, and that KIS output tends to grow in proportion to these macroeconomic trends. With further analysis, it is clarified that KIS activities contribute to capital deepening and productivity improvement. Therefore, it can be said that it is important to study KIS with regard to its impact on economic growth.

Key words: Knowledge-intensive Services (KIS), Labor-augmenting technology progress, Real Business Cycle model (RBC)

JEL Classification: L16, L86, and L89

CONTRIBUTION OF KNOWLEDGE-INTENSIVE SERVICES TO ECONOMIC GROWTH

1. Introduction

1.1. Economic growth and service sectors

In today's economy, the service sectors comprise $70-75 \%$ of the economy in most advanced countries, although fewer empirical and statistical studies have been performed with regard to the service sectors than manufacturing sectors. Various statistical issues need attention, one of which is how we measure real value added, and productivity of service sectors.

Service sectors are becoming more technology- and knowledge-intensive, as seen particularly in information technology (IT) services. As for the recent financial turmoil, it is often said that the development of technology has surpassed our ability to provide adequate governance and control over financial transactions. It is an on-going problem to measure the impact of these technologies and knowledge capital (tangibles and intangibles) used to provide such services. Input deflators and the unit of measurement for service output are still not defined in a consistent manner. Thus, the appropriate quantification of service value and the measurement of its effect on economic growth are historical questions which retain their importance in today's economy. One factor making the study of the service industry difficult is that the performance of each service sector varies widely. The macroeconomic indicators i.e. output quantity, price deflator, productivity, and capital accumulation exhibit significant variations across sectors (OECD, 1996). In addition, the methods of research on service sectors are not well understood.

1.2. Knowledge-intensive Services (KIS)

One of the areas that have not been studied in past research is the consideration of Knowledgeintensive Services (KIS) in economic growth models. OECD has published a report on KIS (OECD, 2006). According to this KIS are defined as 'the production or integration of service activities, undertaken by firms and public sectors in the context of manufacturing or services, in combination with manufactured outputs or as stand-alone services' (p.7). KIS play a role to strengthen knowledge production activities not only in service sectors but also in manufacturing sectors. KIS are a type of service to be consumed as final output but also influence the performance of other organizations and value chains beyond sectors. Thus, it is considered that

KIS can be an important contributor to economic growth as one of the fastest growing sectors among the other service sectors (See Figure 1).

In addition, KIS contribute directly to some types of technological innovation and advancement. KIS include research and development (R\&D), management consulting, information and communications services, human resource management and employment services, legal services (including those related to intellectual property rights), accounting, financing, and marketing-related service activities (p.7). These services are, as they are referred to, knowledge-intensive. Some of these services, such as financial services and information services, are also technology intensive. In other words, they are relatively labor intensive generated and delivered by employees with high levels of education and specialized expertise, knowledge and skills without using production equipment or other types of plant-specific tangible capital. The knowledge capital pertaining to such workers can be firm-specific intangibles. Figure 1 shows the relative increase of KIS in the total investment into intermediaries in the United States.

Figure-1: Growth of Investment into KIS and Other Intermediary Investment

Source: U.S. BEA (Data: 1986=100)

To narrow down the scope of research on the service industry and to incorporate the abovementioned overview on KIS, this paper examines the effect of KIS on macro economy in order to verify how KIS impact economic growth, by using correlation, multiple regression analysis and simulation.

2. Theory

2.1. Overview

In economic growth models, KIS can be considered as 'intermediaries' or support services (Hall, 1991). Theoretically it is explained how KIS interlink industries with innovative activities, and achieve the maximum rate of knowledge production. This paper uses a standard Real Business Cycle (RBC) model to capture movements in Total Factor Productivity (TFP), and other macroeconomic indicators in relation to the effect of KIS.

After Solow provided a fundamental theory for productivity measurement, Hall modified the theory by adding materials and intermediate products as inputs in addition to labor and capital, and argued that under competition and constant returns to scale, the Solow residual is uncorrelated with all variables for TFP (Gali, 1999). He showed that aggregate demand and the utilization rate of capital and labor also cause TFP fluctuations. Gali (1999) and many others examined technology shocks and their relationship to short-term effects. Fisher (2006) studied investment-specific changes, which affects labor productivity in the long run, the real price of investment goods, and investment goods prices. Hayashi and Prescott (2002) examined TFP as exogenous for Japanese economy. Basu, Fernald, and Kimball (2006) and Miyagawa, Sakuragawa and Takizawa (2006) incorporated a method to subtract the utilization rate of capital and labor, scale factors, and labor hoarding to examine pure technological shock.

This paper is based on Hayashi and Prescott (2002), and studied KIS from macroeconomic perspectives, which are modified to align Bureau of Economic Analysis (BEA) data and U.S. Census data following McGrattan and Prescott (2008).

2.2. Growth Model

1) Technology

The production function, Y, for industry i at time t is written in:

$$
\begin{equation*}
Y_{i, t}=A_{t} \cdot K_{i, t}^{\theta} \cdot L_{i}^{1-\theta} \quad(0<\theta<1) \tag{1}
\end{equation*}
$$

where productivity is A, capital, K, and labor input, L. Labor input is $L=(h E)$, in which h is hours per employee and E is employment. Therefore, it is rewritten as follows:

$$
\begin{equation*}
Y_{i, t}=A_{t} \cdot K_{i, t}^{\theta} \cdot(h E)_{i, t}^{1-\theta} . \tag{2}
\end{equation*}
$$

In this case, A is labor-augmenting technological progress. The capital stock for the next period is given by:

$$
\begin{equation*}
K_{t+1}=(1-\delta) K_{t}+X_{t} . \tag{3}
\end{equation*}
$$

X is investment in intermediaries. K is the sum of capital stock. δ is depreciation rate, which explained in detail in Table B in the Appendix. Investment into intermediaries, X, are a composite of KIS, and other types of intermediaries. Therefore, X is derived from:

$$
\begin{equation*}
X=f\left(X_{T}, \varepsilon\right), \tag{4}
\end{equation*}
$$

in which X_{t} is a composite index of energy, materials, purchased services less KIS based on the KLEMS (K-capital, L-labor, E-energy, M-materials, and S-purchased services) model of BEA (U.S. Census Bureau, 2003) and Strassner, Medeiros, and Smith (2005). ε is the investment into KIS as intermediary. KIS include scientific R\&D services and organizational structure management (i.e. consulting, finance) etc. as defined in detail in the Appendix. The maximum present value is equal to after-tax profits less net investment in capital, which is obtained from:

$$
\begin{equation*}
P_{i, t}=\left(1-\tau_{i, t}\right)\left(Y_{i, t}-W_{i, t} E_{i, t}-\delta_{i, t} K_{T, i, t}-X_{i, t}\right)-K_{T, i, t+1}+K_{T, i, t} . \tag{5}
\end{equation*}
$$

Taxable profits are equal to sales less expenses, which are wage payments, tangible depreciation, and expensed investments on intermediaries. K_{T} denotes capital stock for tangibles since depreciation rates are not usually applied to intangibles or knowledge capital. $\tau_{i, t}$ is business tax rate. $x^{\theta(1-\theta)} \mathrm{x}^{\theta /(1-\theta)}$ is the capital intensity factor $(x \equiv K / Y)$ (Prescott and McGrattan, 2008).
2) Household

The household utility function is:

$$
\begin{equation*}
\max _{\left\{c_{t} K_{t+1}\right\}} \sum_{t=0}^{\infty} \beta N_{t}\left[\log c_{t}\right], \tag{6}
\end{equation*}
$$

in which c_{t} is per member consumption $\left(c_{t} \equiv C_{t} / N_{t}\right)$ at time $t . \beta$ is as defined in the Parameters section in the Appendix. Hours per employee is denoted as h, and working-age population, N.e is the ratio of aggregate employment to the working-age population, $N(E / N)$. Then, marginal utility of household is derived from:

$$
\begin{equation*}
\frac{C_{t+1}}{C_{t}}=\beta\left[1+\left(1-\tau_{K}\right)\left(r_{t+1}-\delta\right)\right] . \tag{7}
\end{equation*}
$$

The household tax rate is lump-sum taxes (π), except for the tax on capital income at rate $\tau_{\kappa} . r_{t}$ is the rental rate of capital. The budget constraint of the household is:

$$
\begin{equation*}
C_{t} \prec \omega_{t} h_{t} E_{t}+r_{t} K_{t}-\tau_{K}\left(r_{t}-\delta\right) K_{t}-\pi_{t} I_{t}-X_{t} \tag{8}
\end{equation*}
$$

where I is personal income. ω_{t} represents wage rate subject to the marginal productivity condition for labor:

$$
\begin{equation*}
\omega_{t}=(1-\theta) A_{t} K_{t}^{\theta}(h E)_{t}^{-\theta} . \tag{9}
\end{equation*}
$$

3) Government

Aggregate output, Y_{t}, consists of consumption, C_{t}, government expenditures, G_{t}, and investment, X_{t}. Investment refers to the aggregate of domestic private investment and the current account $(C A)$ surplus:

$$
\begin{equation*}
Y_{t}=C_{t}+X_{t}+G_{t}+C A_{t} \tag{10}
\end{equation*}
$$

Government taxes personal income at rate π. As is mentioned, tax on capital gain is at rate τ_{K}. For corporate profit, the tax rate is set to τ_{i}, as in the Parameters section in the Appendix. As for the trends of some important variables, please refer to the following set of figures

Figure 2: Trends of Major Variables

Note: $K_{-} Y$ corresponds to the left axis. $X_{-} Y$ and $G_{-} Y$ are on the right axis.

Note: Hours worked is scaled to the right axis. Unit: w (million), and h (hours/month)

Note: Working-age population is referred to the right axis.
Unit: C (million), P (million), and N (Thousand)

2.3. Correlation and Regression Analysis

Based on the models defined in the previous section, data is prepared as summarized in Table 3. Analyses are performed to clarify correlations between the investment in KIS (ε) and the other variables.

The following equations are based on Basu et al. (2006) and used for detrending variables by defining as follows:

$$
\begin{equation*}
\tilde{k}_{t} \equiv \frac{K_{t}}{A_{t}^{\frac{1}{1-\theta}} N_{t}}, \tilde{\mathrm{c}}_{t} \equiv \frac{C_{t}}{A_{t}^{\frac{1}{1-\theta}} N_{t}}, \mathrm{y}_{t} \equiv \frac{Y_{t}}{A_{t}^{\frac{1}{1-\theta}} N_{t}}, \gamma_{t} \equiv \frac{A_{t+1}^{\frac{1}{1-\theta}}}{A_{t}^{\frac{1}{1-\theta}}}, \psi_{t} \equiv \frac{G_{t}}{Y_{t}}, \mathrm{n}_{t} \equiv \frac{N_{t+1}}{N_{t}}, \mathrm{x}=\frac{\frac{\frac{\gamma}{\beta}-1}{\frac{\frac{1}{1-\tau}}{}+\delta}}{\theta} \tag{11}
\end{equation*}
$$

Cumulative periodogram white-noise test is applied to both intermediaries $\left(X_{T}\right)$ and KIS (ε). Bartlett's (B) statistic and Probability >B are 1.723 and 0.005 respectively for X_{T} and 2.036 and 0.000 respectively for ε. For all the other variables in the analysis, the probability is found to be 0.000 for all.

Then, Box-Jenkins autoregressive integrated moving-average (ARIMA) model is also fitted to the variables, which specify models with linear autoregressive moving-average (ARMA) disturbances. Next, Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) test are applied ${ }^{1}$ to the variables to see if they follow a unit-root process. To check the autocorrelations, partial autocorrelations, and Portmanteau (Q) statistics, a corrogram is produced in each process to visually check the status of autoregression for all variables as well as their residuals along with Breusch-Godfrey LM test. After visually checking ARMA disturbances for X_{T} by using the corrogram, ADF test is applied, in which MacKinnon approximate p -value for $\mathrm{Z}(\mathrm{t})$ is found to become 0.198 . According to the PP test for unit root, MacKinnon approximate p -value for $\mathrm{Z}(\mathrm{t})$ is 0.992 . Breusch-Godfrey LM test for autocorrelation also shows that the probability > chisquared becomes 0.319 . Therefore, based on the idea of progression of differences, the firstorder difference is derived for X_{T}. ADF test and PP test are applied, in which MacKinnon approximate p-value becomes 0.000 and 0.071 respectively. As for ε, the result of ADF test and PP test is 0.665 and 0.876 respectively. Then, by taking the first-order sequence of difference, the same tests are applied again. The MacKinnon approximate p-value becomes 1.000 and 0.649 respectively. Corrogram also shows the existence of autoregression with the variable in the firstorder difference. Therefore, the second-order sequence of difference for ε is produced, and the

[^0]same procedures are performed. The MacKinnon approximate p-value is reduced to 0.004 and 0.001 respectively in ADF test and PP test.

By incorporating the results, the panels are regressed by taking intermediaries $\left(X_{T}\right)$ and KIS (ε) as independent variables. The regression is performed with 95% confidence level using Huber/White/sandwich estimator for robustness. Independent variables in the panels are shown in Table 1. Each variable is examined, and excluded in stepwise method when p value becomes more than $0.1(>0.1)$. Outliers are also excluded if standard deviation is above three (>3). The model should be excluded from analysis when Variance Inflation Factor (VIF) is greater or equal to ten ($\geqq 10$) according to collinearity statistics. Table 1 is a collection of results, in which significant level is shown either at $0.01\left({ }^{*}\right), 0.05\left({ }^{* *}\right)$, or $0.10(+)$. The partial and semipartial correlation coefficients of the independent variables, the squared correlations, and significance are reported in the table.

According to the results, KIS have more impact on these macro indicators than X_{T} has. KIS is significant for values such as $Y, C, G, K, L, A, P, W, N$, and h in spite of differences in R2. Employment rate (e), capital-to-output ratio (K / Y), intermediaries-to-output ratio (X / Y), or government spending share (G / Y) do not exhibit statistical significance. Among all the variables that represent the high R2s, the highest coefficient is shown for P, followed by C.

Overall it can be interpreted that KIS vary in line with macroeconomic trends much closer than the other types of intermediaries. It has become clear that KIS grows when the aggregate economy expands. At the same time, the growth of KIS has outpaced GDP in recent years as is shown in Figure 1 and Table 3. To clarify this point, the following section of this paper is given to discuss the output and input of KIS and its effect on capital stock and productivity, by simulating the future trend for KIS.

Table 1: Regression

Dependen t Var.	Independ ent Var.	Coef.	Constant	P	$\begin{gathered} \text { Prob > } \\ \mathrm{F} \end{gathered}$	Rsquared	Robust Std. Error	VIF	Partial Corr.	Semipartial Corr.	$\begin{gathered} \text { Partial } \\ \text { Corr. } \wedge 2 \end{gathered}$	Semipartial Corr.^2	Significanc e Value	Breusch Weis heter	
Y	Xkis	0.205**	10.510*	0	0.0916	0.258	0.074	1	0.4803	0.4662	0.2307	0.2173	0.1349	chi2(2)	0.24
	Xt			0.5916				NA	0.1507	0.1298	0.0227	0.0169	0.6582	Prob > chi2	0.8859
C	Xkis	0.109**	14.579*	0	0.0144	0.328	0.037	1	0.5501	0.5356	0.3026	0.2869	0.0796	chi2(2)	0.24
	Xt			0.6835				NA	0.1241	0.1017	0.0154	0.0103	0.7163	Prob > chi2	0.8848
G	Xkis	0.086**	9.316*	0	0.0216	0.298	0.021232	1	0.5262	0.5163	0.2769	0.2666	0.0964	chi2(2)	9.62
	Xt			0.7868				NA	0.0858	0.0718	0.0074	0.0052	0.802	Prob > chi2	0.0081
K	Xkis	0.100**	16.175*	0	0.0181	0.304	0.018817	1	0.5295	0.5173	0.2804	0.2676	0.0939	chi2(2)	0.8697
	Xt			0.2037				NA	0.1109	0.0925	0.0123	0.0085	0.7455	Prob > chi2	0.4359
L	Xkis	0.0258**	16.391*	0	0.014	0.28	0.012937	1	0.5078	0.4956	0.2578	0.2456	0.1108	chi2(2)	0.8697
	Xt	-		0.6656				NA	0.1197	0.1014	0.0143	0.0103	0.7259	Prob > chi2	0.4359
A	Xkis	0.018**	7.780*	0	0.038	0.254	0.00608	1	0.4843	0.4766	0.2345	0.2272	0.1312	chi2(2)	11.45
	Xt			0.3158				NA	0.0764	0.0659	0.0058	0.0043	0.8234	Prob > chi2	0.0033
P	Xkis	0.105**	13.976*	0	0.0145	0.354	0.035638	1	0.5746	0.5613	0.3302	0.3151	0.0644	chi2(2)	0.8697
	Xt			0.7495				NA	0.1028	0.0826	0.0106	0.0068	0.7636	Prob > chi2	0.4359
W	Xkis	0.098**	14.303*	0	0.0128	0.317	0.032549	1	0.5392	0.5238	0.2908	0.2743	0.0869	chi2(2)	0.8697
	Xt			0.1285				NA	0.1381	0.1141	0.0191	0.013	0.6854	Prob > chi2	0.4359
N	Xkis	0.023**	17.406*	0	0.0123	0.325	0.002745	1	0.5474	0.5331	0.2996	0.2842	0.0814	chi2(2)	4.94
	Xt			0.6706				NA	0.1236	0.1015	0.0153	0.0103	0.7173	Prob > chi2	0.0844
e	Xkis			0.3388	0	0		NA	0.1513	0.1506	0.0229	0.0227	0.657	chi2(2)	
	Xt			0.7814				NA	0.0582	0.0574	0.0034	0.0033	0.865	Prob > chi2	
h	Xkis	0.021**	4.998*	0	0	0.016	0.0075	1	0.4746	0.4616	0.2252	0.213	0.1402	chi2(2)	10.03
	Xt			0.6137				NA	0.1426	0.1233	0.0203	0.0152	0.6758	Prob > chi2	0.0066
K/Y	Xkis			0.7694	0	0		NA	-0.1051	-0.1048	0.011	0.011	0.7584	chi2(2)	
	Xt			0.8475				NA	-0.0483	-0.048	0.0023	0.0023	0.8878	Prob > chi2	
X/Y	Xkis			0.6733	0	0		NA	0.0862	0.0857	0.0074	0.0073	0.801	chi2(2)	
	Xt			0.7315				NA	0.088	0.0875	0.0077	0.0077	0.7969	Prob > chi2	
G/Y	Xkis			0.1118	0	0		NA	-0.4208	-0.4039	0.1771	0.1632	0.1975	chi2(2)	
	Xt		,	0.5467				NA	-0.205	-0.1824	0.042	0.0333	0.5453	Prob > chi2	

Note: Any p values other than 0 refer to the values based on which the corresponding variable is removed from the model. ${ }^{* *}$ significant at $5 \% ; *$ significant at 1%. Observations: 20.

3. Simulation

Output growth can be achieved by several factors. According to Jorgenson, Ho, and Stiroh (2003), growth in productivity is decomposed by capital deepening, labor quality improvement, and total factor productivity (TFP) growth. Capital deepening is defined as 'increases in capital per worker enhance labor productivity.' Labor quality improvement is expressed as 'the contribution of increases in labor input per hour worked.' Based on the supplemental data presented in Table 4, capital input per worker has increased the most since 1986 followed by capital stock per worker although the growth is not as much as the level of capital input per worker. Labor productivity (output per worker) has approximately doubled during the twenty years. Labor hours and unit labor costs have remained in a $2-4 \%$ increase range. Output per hour has improved also although data is not available for the whole period. It is considered that the output growth of 3.77 points is achieved by the improvement of both capital stock accumulation and labor productivity.

The following section is to obtain further result on the trend of KIS in terms of capital stock and TFP. By using the parameters and equations shown below, the trend of KIS is simulated by using the data during 1987-2006, the period when accurate data for KIS is available.

3.1. Models and Parameters

Data is simulated for the period of fifty years starting in 1987 ending in 2036 (the projection period is therefore thirty years starting from 2006) assuming that the average growth rate of GDP is 4% annually and the average growth rate of KIS is at 7.5%. These growth rates are observed as an average sample growth rate for the data period of twenty years. Based on the data in Table 4 and Table 5, TFP for the entire economy and TFP specific for KIS are chained to 1986 level (1986=100) for data consistency. Capital level per worker for KIS is also chained to 1986 due to lack of detailed data. Therefore, the net capital level for KIS must be compared to the net capital level for the entire economy percentage wise in terms of growth rate. Initial capital level is obtained by the capital level in 1986 divided by TFP, in which capital grows at 4.8\% annually and TFP grows at γ each year. As for KIS, the capital level increases at 3.3\% annually according to the given data. In addition, TFP for KIS is supposed to grow at 3.9% a year. The average growth rate for the KIS output and KIS ratio to the aggregate output is 7.5% and 3.5% respectively. According to the conditions above, the capital growth level for the entire economy is given by:

$$
\begin{gather*}
\dot{k}_{t}=\left(\dot{k}_{t-1} * 1.048\right)^{1-\frac{Y_{t}}{Y}}+\left(\dot{k}_{t-1}^{\frac{Y_{t}}{Y}} * \dot{k}_{K I S, t-1}\right) ; \tag{12}\\
\dot{k} h_{t}=\left(\frac{\dot{c} c_{t}}{(1-\theta) * \frac{36}{\alpha}}\right)^{\frac{1}{\theta}}, \tag{13}
\end{gather*}
$$

in which $\dot{k} h_{t}$ is the rate of capital per worker and $\dot{c} c_{t}$ is consumption level at time t, and the average weekly working hour is 36 hrs . TFP growth rate (γ) is also supposed to grow at 0.9% annually. Therefore, the TFP growth rate is obtained when KIS are counted from:

$$
\begin{equation*}
\gamma_{t}=\left(\gamma_{t-1} * 1.009\right)^{1-\frac{Y_{t}}{Y}}+\left(\gamma_{t-1}^{\frac{Y_{s}}{Y}} * \gamma_{K I S, t-1}\right) . \tag{14}
\end{equation*}
$$

Besides these variables, the population growth rate and government spending share are set to the level of 2006. As for the other parameters, please refer to Table 2.

3.2. Analysis

According to the result, capital per worker ($k h$) would grow at 0.027 points more if KIS should be counted and grow at the current pace at the end of the projection period of 2036. TFP growth rate (γ) would improve at 0.043 points above the current growth level. Please refer to Figure 3 and Figure 4. It is assumed that KIS would have an effect to enhance capital accumulation and productivity improvement. Therefore, the combination of these two aspects would change the initial capital level, and its convergence speed. At the same time, it is not clear how much KIS would contribute to the capital accumulation in terms of intangibles, i.e. capital stock resulting from R\&D investment, due to lack of detailed data for the subsector of KIS. KIS sector has been investing in tangible capital, and productive capital stock has accumulated at a faster pace than the overall economy. This is a contributor to the enhancement of capital stock for KIS, although it is important to clarify how KIS strengthen the capacity of knowledge accumulation and intangibles.

Figure 3: Effects of KIS on TFP

Figure 4: Effects of KIS on Capital

4. Conclusion

The service sector has been growing in today's economy although there is a relatively smaller number of empirical and statistical studies compared to manufacturing sectors, mainly due to a lack of adequate statistics and data. This paper focuses on knowledge-intensive service (KIS) activities, which have not been the focus of past research, except for narrative discussion of its importance and case studies (OECD, 2006). KIS produce and integrate existing service activities which are undertaken by firms and the public sector, both in manufacturing and service sectors. It is said that KIS strengthen knowledge production activities, and engage in innovative activities as a mediator for promoting innovation. Based on these observations, this paper examines the effect of KIS to verify how KIS impact the entire economy by using data taken from U.S. statistics. This paper employs the standard RBC model to analyze KIS with multiple regression analysis and simulation. The equations and models are based on Hayashi and Prescott (2002).

According to the results, it is revealed that KIS has an impact on the variables such as aggregate output, consumption, government expenditures, capital stock, and productivity. KIS are not related to the employment rate. Furthermore, multiple regression analysis shows that KIS have more significant impact on most macroeconomic indicators than X_{T} has on them. Therefore, it can be said that KIS grow with macroeconomic trends more proportionately than the other types of intermediaries. KIS sectors grow as the entire economy expands, in which the rate of KIS output growth outpaces the rate of GDP growth.

Based on these observations, further analysis on the trend of KIS is made in terms of capital stock and TFP. According to the simulated trend of KIS, capital per worker in the entire economy would grow at 0.027 points more at the end of the projection period of 2036 if KIS would grow at the current pace. TFP growth rate would also improve at 0.043 points above the current growth level. KIS contribute to the capital deepening and productivity improvement.
For future research, it is important to incorporate the effect of intangibles more precisely in the macroeconomic trend, which inherit the nature of knowledge-intensive activities. Intangibles include information software and data processing, branding, and knowledge capital. It is difficult to measure these aspects quantitatively or qualitatively such as measuring depreciation rates for software programs. Not only to capture the trend of KIS but also to reveal the performance of the entire service sector, it is necessary to devise in accurate measurement scheme. By clarifying the quantification method of values for service sectors, we would be able to reveal the trend of service sectors more clearly, and assess their impact on economic growth.

REFERENCES

Basu, S. , Fernald, J., and Kimball, M. 2006. "Are Technology Improvements Contractionary?", American Economic Review 96: 1418-1448.
Corrado, C., Hulten, C. and Sichel, D. 2006. "Intangible Capital and Economic Growth", FEDS Working Paper No. 2006-24, Federal Reserve Board.
Fisher, J.D.M. 2006. "The Dynamic Effects of Neutral and Investment-specific Technology Shocks", Journal of Political Economy 114: 413-451.
Fraumeni, B.M. 1997. "The Measurement of Depreciation in the U.S. National Income and Product Accounts", Survey of Current Business, U.S. Bureau of Economic Analysis.
Gali, J. 1999. "Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations", American Economic Review 89: 249-271.
Hall, R. E. 1991. "Invariance Properties of Solow's Productivity Residual", NBER Working Paper No. 3034, National Bureau of Economic Research.
Harper, M.J., Berndt, E.R., and Wood, D.O. 1989. "Rates of Return and Capital Aggregation Using Alternative Rental Prices" (in Jorgenson D.W. and Landau, R. -eds., Technology and Capital Formation), MIT Press, pp.331-372.
Hayashi, F. and Prescott, E. 2002. "The 1990s in Japan: A Lost Decade", Review of Economic Dynamics, 5: 206-235.
Jorgenson, D.W., Ho, M.S. and Stiroh, K.J. 2003. "Lessons from the US growth resurgence", Journal of Policy Modeling 25: 453-470.
McGrattan, E.R. and Prescott, E.C. 2008. "Technology capital and the U.S. current account", Staff Report No. 406, Federal Reserve Bank of Minneapolis, US.
Miyagawa, T., Sakuragawa, Y., and Takizawa, M. 2006. "The impact of technology shocks on the Japanese business cycle--An empirical analysis based on Japanese industry data", Japan and the World Economy 18: 401-417.
OECD. 1996. Services: Measuring Real Annual Value Added.
OECD. 2006. Innovation and Knowledge-Intensive Service Activities.
Strassner, E.H., Medeiros, G.W. and Smith, G.M. 2005. Annual Industry Accounts: Introducing KLEMS Input Estimates for 1997-2003, Survey of Current Business, U.S. Bureau of Economic Analysis. http://www.bea.gov/industry/an2.htm, [Accessed 8.25.2009]
U. S. Census Bureau. 2003. 2002 NAICS Definitions: 541 Professional, Scientific, and Technical Services, http://www.census.gov/epcd/naics02/def/NDEF541.HTM\#N541, [Accessed 8.25.2009]
U.S. Bureau of Economic Analysis. 2003. Fixed Assets and Consumer Durable Goods in the United States, 1925-97, U. S. Department of Commerce.

APPENDIX

A. Data

Data sources for each parameter and value are listed below. With regard to the availability of data, this paper uses data from 1978-2006. Any missing historical data is computed based on the average rate of change over the entire data period.

1) $\operatorname{KIS}(\varepsilon)$
$-\varepsilon \varepsilon$: This paper employs the definition of KIS presented by the OECD report (2006, p.7). In this report, KIS are referred to as Knowledge-intensive Service Activities (KISA). KIS are also referred to as Knowledge-intensive business services (KIBS) in a narrower definition in some literature. Following the definition of OECD, the data on KIS used in this paper is obtained from Bureau of Economic Analysis (BEA) in U.S. Department of Commerce and U.S. Census Bureau. Most KIS activities are included in Professional, Scientific, and Technical Services (541; 2002 North America Industry Classification System (NAICS) Definitions). According to NAICS definition, the Professional, Scientific, and Technical Services subsector group establishments are engaged in processes where human capital is the major input, which make available the knowledge and skills of their employees, often on an assignment basis, where an individual or team is responsible for the delivery of services to the client (Corrado, Hulten, and Sichel, 2006).
2) Productivity (A)
-Y: Value added by industry is obtained from the statistics of GDP by industry and value added (GDPbyIND_VA_NAICS) prepared by the Current Industry Analysis Division, BEA. The 1997 NAICS-based data for value added is prepared at the 22-industry level of detail for 1947-76 and the 65-industry level of detail for 1977-86. The data for 1998-2007 is also based on 1997 NAICS industry definition prepared at the 65 -industry level of detail. For GDP adjusted with R\&D taken as intermediaries is available from Satellite Account of BEA for 1959-2004.
-A: Productivity, A, is value added (VA) per production worker hour (h). Total Factor productivity (TFP) is directly obtained from Multifactor Productivity and Cost, 1948-2007 computed by Office of Productivity and Technology, Bureau of Labor Statistics, U.S. Department of Labor.
*CPI: Inflation rate is obtained from Consumer Price Index (CPI) and import price indexes for selected categories provided by the Department of Labor.
3) Labor (L)
-E: Employment is based on the data of full-time and part-time employees from GDP by industry and value added.
-w: Wage rate is compensation of employees (the sum of wages and salaries and supplements to wages and salaries) from the same source divided by the inflation rate.
-N : Working-age population is the population from 15 to 64 , whose data is taken from population estimate by age from the U.S. Census Bureau, International Data Base and Employment status of the civilian noninstitutional population, 1942 to date from Labor Force Statistics from the Current Population Survey, the Department of Labor.
-h: Production worker hour (h) is retrieved from Hours Worked by Full-Time and Part-Time Employees by Industry, annual data from BEA. Also, U.S. Department of Labor provides Average hours and earnings of production and nonsupervisory workers on private nonfarm payrolls by major industry sector.
4) Intermediary (X)

Investment into various intermediaries is taken from Intermediate inputs from GDP by industry and value added prepared by BEA.
$-\mathrm{X}_{\mathrm{T}}$: Investment into tangibles is the sum of inputs into energy, materials, purchased services less KIS.
$-\varepsilon$: Data is taken from a subsector Professional, scientific, and technical services in Intermediate inputs from GDP by industry and value added prepared by BEA as well as Service Annual Survey of Census Bureau.
5) Capital stock (K)
$-\mathrm{K}_{\mathrm{T}}$: BEA's data contains detailed estimates for net capital stock of nonresidential fixed assets presented for industries by asset type (1997 NAICS-based BEA codes).

- δ : Depreciation rates are taken from Hulten-Wykoff categories based on U.S. Bureau of Economic Analysis (2003) and Fraumeni (1997).

6) Household consumption (C)
-C: Household consumption is taken from the data, GDP by industry and value added, prepared by BEA.
$-\pi$: Lump-sum taxes are derived as a sample average over the period based on the data provided by U.S. Internal Revenue Service (IRS). Data used is Individual Income Tax Returns with

Positive Adjusted Gross Income (AGI) for 1986-2005.
$-\tau_{\mathrm{K}}$: Information on capital gain tax policies is obtained from IRS website.
-r: Capital income data is obtained from comprehensive tables of multifactor productivity and related capital data for private business, private nonfarm business and manufacturing prepared by the Department of Labor, Bureau of Labor Statistics, Office of Productivity and Technology. Please refer to Harper, Berndt, and Wood (1989) for the method of calculation.
7) Government expenditures (G)
-G: Government spending is obtained from GDP by industry and value added prepared by BEA.
-CA: Current account surplus is indicated in Balance on current account presented by BEA's
U.S. International Transactions Accounts Data.
$-\tau_{\mathrm{i}}$: Tax rate on corporate profits is derived from Corporation Income Tax Returns: Historical Table prepared by IRS.

Table 2: Parameters

Parameter	Description	Value
θ	Capital share in production.	0.31
δ	Depreciation rate	0.15
β	Discounting factor	0.98
τ_{K}	Capital income tax rate	0.15
τ_{i}	Business tax rate	0.31
π	Lump-sum tax rates	0.135
α	Government spending share	0.19

B. Data Tables

Table 4: Data on Labor Productivity for KIS

Year	Employmen (1987=100)	$\begin{gathered} \text { Output (Value } \\ \text { Added, VA) } \\ (1987=100) \end{gathered}$	$\begin{gathered} \text { Compensation } \\ (1987=100) \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Input } \\ \text { Internediarie } \\ \text { s.nputi) } \\ \text { (1987=100) } \\ \text { (197 } \end{gathered}$		$\begin{gathered} \text { Unit labor } \\ \text { (Compensatio } \\ \text { (Compenstio } \\ \text { (1087) } \\ (1987=100) \end{gathered}$			$\begin{gathered} \text { Oupup to } \\ \text { input } \\ \text { inf } \\ \text { (1987 } 10100 \\ \hline \end{gathered}$	$\begin{gathered} \text { Capital per } \\ \text { worker } \\ \text { (Capital } \\ \text { input/employ } \\ \text { ment) } \\ (1987=100) \end{gathered}$	$\begin{gathered} \text { Capital per } \\ \text { worker* } \\ \text { (Capital } \\ \text { stock/employ } \\ \text { ment) } \\ (1987=100) \end{gathered}$
1987	1.000	1.000	1.000	1.000		1.000		000	,00		
1988	1.050 1.090 1	1251	${ }^{1.125}$	${ }_{\text {l }}^{1.1245}$		0.999 0.987		${ }^{1.012}$	0.983	${ }_{1}^{1.034}$	102
1990	1.129	${ }_{1.376}$	${ }_{1.355}$	${ }_{1}^{1.367}$		0.985		1.219	1.007	${ }_{1} 1.103$	1.033
	1.115	1.399	${ }_{1.393}$	1.432		0.996		1.255		${ }^{1.178}$	
1992	1.142	1.513	1.506	1.500		0.995					
	1.196	1.5	1.598	1.630		1.004					
	1.267	1.687	1.689	1.812		1.001					
	1.337	1.79	1.833	2.995		1.021				190	
	1.401	1.956	1.995	2.392		1.020					
1997	1.492	2.165	2.214	2.706		${ }_{1} 1.023$					
1998	1.576	2.358	2.475	3.211		${ }^{1.050}$					
1999	1.661	2.571	2.728	3.570		1.061					
2000	1.735	2.75	2.993	4.16	1.000	1.086	1.000				
2001	1.715	2.816	3.0	4.40		${ }^{1.076}$	1.065				
202	1.663	2.872	3.012	4.502	0.936	${ }^{1.049}$	1.114	1.727			
2003	1.664	3.016	3.108	4.676	0.927	${ }^{1.030}$	1.181				
O4	1.706	3.232	${ }^{3.294}$	5.130	0.958	1.019	1.225	1.894	0.63		
2005	${ }^{1.7685}$	${ }^{3.510}$	${ }^{3.585}$	${ }^{5.612}$	0.992	${ }_{1}^{1.021}$	${ }^{1.284}$	${ }^{1.989}$	${ }^{0.625}$	${ }_{2}^{2.663}$	1.758
	1.828	3.770	3.866			1.226					

[^0]: ${ }^{1}$ In this process, lags are defined as: $\operatorname{INT}\left(12 *(\text { years } / 100)^{(1 / 4)}\right)$.

