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ABSTRACT 
 

This paper examines the existence of limit cycles in Japanese macroeconomic variables using a 
threshold autoregressive (TAR) model. Recent business cycle theories are grouped into two 
main categories: (1) real business cycle and (2) endogenous business cycle. Real business cycle 
theory, which is modelled by an autoregressive (AR) model, has a linear dynamic system with 
consecutive exogenous shocks that cause cyclical deviations from a growth trend. On the other 
hand, endogenous business cycle theory, which includes limit cycles characterized by a TAR 
model, is based on a nonlinear dynamic system that has a mechanism that induces complicated 
economic fluctuations endogenously. Which theory is appropriate has significant implications 
for policy makers. Accordingly, it is necessary to investigate whether economic fluctuations 
depend on an endogenous mechanism or on exogenous shocks. To investigate this, we test for 
linearity in Japanese macroeconomic variables. The linearity test in the paper distinguishes the 
TAR model from the AR model. We find that most fluctuations have TAR processes. The 
results indicate that most Japanese macroeconomic data have limit cycles, and imply that the 
government could control the business cycle in Japan, even though the cyclical behaviour is 
extremely complicated. 
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LIMIT CYCLES IN JAPANESE MACROECONOMIC DATA: 

POLICY IMPLICATIONS FROM THE VIEW OF BUSINESS CYCLES 

 

1.  Introduction 

This paper examines the existence of limit cycles in Japanese macroeconomic variables using a 

threshold autoregressive (TAR) model. Recent business cycle theories are grouped into two 

main categories: (1) real business cycle and (2) endogenous business cycle. In real business 

cycle theory, a stochastic business cycle model, which includes stochastic exogenous influences 

for causing cyclical deviations from a growth trend, and a linear dynamical system, are used to 

describe the actual complicated economic fluctuations. An autoregressive (AR) model, therefore, 

is utilized mostly to estimate a model based on this theory. 

 Endogenous business cycle theory, on the other hand, is based on a nonlinear dynamic 

system that has a mechanism that induces complicated economic fluctuations endogenously. 

Based on this theory, limit cycles characterized by a TAR model, or chaotic dynamical systems, 

are utilized to describe the actual complicated economic fluctuations. For the estimation of the 

chaotic dynamical systems, see Nishigaki, Ikeda, and Satake (2007). They find that the 

evidence for chaos in Japanese quarterly macro-economic time series is weak. 

 Which theory is appropriate has significant implications for policy makers. 

Accordingly, it is necessary to investigate whether economic fluctuations depend on an 

endogenous mechanism or on exogenous shocks. To investigate this, we test for linearity in 

Japanese macroeconomic variables. The linearity test in the paper distinguishes the TAR model 

from the AR model. We find that most of them have TAR processes, i.e. the two-regime or 

three-regime TAR processes. The results indicate that most Japanese macroeconomic data have 

limit cycles. This implies that the government could control the business cycle in Japan, even 

though its cyclical behaviour is extremely complicated, because the process follows not the AR 

model, but the limit cycle expressed by the TAR model.  

The remainder of this paper is organized as follows. After a brief survey of recent 

business cycle theories, Section 2 presents the relationship between limit cycles and endogenous 

business cycle theory. Section 3 briefly explains the method of linearity testing. Section 4 uses 

an example of simulation to illustrate the TAR process. Section 5 reports our empirical results. 

Section 6 concludes the paper. 
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2. Limit Cycles and Business Cycle Theories 

For decades, the aim of business cycle theory has been to model the basic underlying dynamics 

of economic fluctuations. The Samuelson-Hicks-type multiplier and accelerator mechanism 

explains the regular forces in oscillating time series, by using linear dynamic systems of 

difference equations, with appropriate assumptions in the economic structures. Although they 

succeeded in modelling the business cycles generated by the internal dynamics of the economy, 

they failed to describe all the fluctuations of actual business cycles, which were characterized by 

many more irregularities, not only in the context of the monotonicity of the cycle, but also in its 

amplitude and frequency. Accordingly, a stochastic exogenous influence had been thought to be 

included in the theoretically expressed linear systems. 

 The rational expectations theory of business cycles constitutes a stochastic business 

cycle model that describes the actual complicated cycles by including stochastic exogenous 

influences, in addition to the implicit regularity with the linear difference and differential 

systems. Typical examples of such models are Lucas (1975) and Prescott (1986). 

 However, in endogenous business cycle theory, many papers have utilized non-linear 

economic dynamics, such as chaotic dynamics or limit cycle theory, to model business cycles, 

and they have succeeded in explaining the seemingly irregular fluctuations in actual time series. 

The basic idea of utilizing limit cycles in business cycle theory was first demonstrated by 

Kaldor (1940), and mathematically formulated by Chang and Smith (1971) and Varian (1979). 

Since then, the theoretical interest of economists has expanded this literature, e.g. Lorentz 

(1993). 

 

 To see the basic dynamics of limit cycle theory, consider the following two 

dimensional ordinary differential equation systems. 

          , ( ) )1.2(, 2111 xxfx =
•

          , ( ) )2.2(, 2122 xxfx =
•

or, in vector notation, 

            ( ) )3.2(xfx =
•

where  and  are smooth functions defined in . The dot 

over a variable denotes a time-derivative. 

),( 21 xxx = 2: RUfi → 2RU ⊆
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 A solution curve, trajectory, or orbit is defined : i.e. when a certain initial 

point  is given,  provides the value of 

),( 0xtφ
0x ),( 0xtφ x  at time . For the existence and 

uniqueness of a solution curve, the function  is assumed to be . 

t
2f C

 A solution curve is called a periodic solution of period T, if there exists p  such that 

),( pTp φ=  for some T. In a phase space of dimension two, a periodic solution constitutes a 

closed orbit, which is called a limit cycle. 

 A periodic solution curve Γ is stable for any 0>ε , if there exists a neighbourhood 

of  and U Γ εφ <Γ)),,(( xtd , for any Ux∈ and . For asymptotic stability or 

asymptotic convergence of a periodic solution 

0≥t

Γ , the followings should be satisfied for all x  

that is contained in the neighbourhood of U Γ . 

            )4.2(0)),,((lim =Γ
+∞→

xtd
t

φ  

The Poincare-Bendixson theorem is most often used to establish the sufficient conditions for the 

existence of closed orbits in the dynamical system of (2.3), although it is of limited use for 

two-dimensional systems (see Lorentz (1993)). 

 

 So far, the discussion has been limited to continuous time nonlinear dynamical 

systems, but this is only for a reference frame of the non-linear time series model in discrete 

time.  

 A limit cycle in discrete time is defined as follows (see Tong and Lim (1980)). Let nx  

ote a 1×k ensional state that satisfies the equation den dim 

( ) )5.2(1−= nn xfx . 

 A limit point in the vector space is defined as follows: A 1×k  dimensional vector 

 is called a limit point, if there exists such that, starting with ,  tends to 

 as n  tends to infinity: . 

*x

*x

*
0 xx ≠ 0=n nx

*lim xxnn
=

+∞→

 A limit cycle in discrete time is defined as follows: Let  denote the set of C 1×k  

dimensional vector , being a positive integer ic TTi ,,,1 ⋅⋅⋅= ∞≤ . 1) C  is called a limit 

cycle of period T  if there exists Cx ∉0 , such that as +∞→n ,  will ultimately fall into 

: ，2) 

nx

*x *xxn → ( ) icf i ,21 = T,ci ,3 K= − ， Ticic iT ,K,2,1==+ ， and 3) T  is the 

smallest such positive integer. 
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 On the effectiveness of the TAR model in inferring the existence of limit cycles in 

time series, the following notation by Tong (1983) is instructive: 

“Physically, limit cycles represent the stationary state of sustained oscillations (now 

dynamic) which do not depend on initial conditions but depend exclusively on the 

parameters of the system, i.e. they are intrinsic properties. In addition, there exist 

limit cycles which have the properties of being robust, i.e. insensitive to small 

perturbation of parameters of the system.” 

 

3.  Linearity Tests 

In the preceding section, it was shown that the class of threshold autoregressive models can 

capture the notion of a limit cycle. In this section, the method of linearity testing, which checks 

whether there are limit cycles in macroeconomic variables in Japan, is briefly explained. 

 Following Hansen (1999), we show the model that tests the linearity of time series 

data. The threshold autoregressive (TAR) model is a nonlinear model that consists of several 

regimes, each of which constructs an autoregressive model that is linear. The variable that 

decides in which regime each observation is contained is named a threshold variable. Among 

the several classes of TAR models, the TAR model in which the threshold variable is its own 

lag is named the ‘Self Exciting Threshold Autoregressive’ (SETAR) model. 

 A SETAR(m) model, in which there are m regimes, takes the form 

     ( ) ( ) )1.3(,, 1111 tmttmttt edIXdIXy +′++′= −− γαγα L , 

where , which has ( )′= −−−− ptttt yyyX ,,,,1 211 K 1×k  vector ( pk +=1 ), ( )11 ,, −= mγγγ K , 

( 12 −<< m1 < γγγ L

( )
), which is named a threshold value to group the observations into regimes. 

( )jdtj yIdjtI γγγ ≤<= −−1,  are dummy variables, and are 1 when jdtyj γγ ≤< −−1 , and 0 

otherwise. When the observations are in jj y dt γγ ≤< −−1

1−

, the processes of the time series are 

in accordance with AR(p) process ′= tj XtY α . 

 The parameters of (1) may be collected as ( )dm ,,,,, 21 γαααθ K= . The parameters 

are estimated by least-squares (LS), given ( )d,γ . ( )d,γ  are determined by minimizing the 

sum of the squared residuals of (1). 

 The testing for linearity is to test the null hypothesis of SETAR(1) against the 

alternative of SETAR(2). The SETAR(1) model can be written as  

         )2.3(11 ttt eXy +′= −α ,  
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which is an AR model, and SETAR(2) as 

          ( ) ( ) )3.3(,, 212111 tttttt edIXdIXy +′+′= −− γαγα .  

The statistic to test the linearity against the TAR model is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2

21
12 S

SSnF , where  

( ) is the sum of squared residuals of the m-regime TAR model. If the threshold value 

mS

2,1=m

γ  and delay parameter  are fixed,  is distributed to d 12F ( )k2χ  under the null hypothesis 

of SETAR(1) which is actually an AR model. However, the asymptotic distribution of  is 

not , unless the threshold value 

12F
2χ γ  or delay parameter  are identified. The distribution is 

estimated by the bootstrap method. If the value of is larger than the critical value of 

d

12F ( )k2χ , 

i.e. if the linearity is rejected, the SETAR(2) model is supported. 

 When the SETAR(2) model is adopted, we proceed to test whether the series are 

subject to SETAR(2) or SETAR(3) models. The SETAR(3) model can be written as 

          ( ) ( ) ( ) )4.3(,,, 313212111 tttttttt edIXdIXdIXy +′+′+′= −−− γαγαγα ， 

where ( 21, )γγγ = , because there are two threshold values in the three-regime TAR model. If 

the threshold value γ  and delay parameter  are fixed, the test statistic is d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

3

32
23 S

SSnF 2, which is also distributed to ( )

23

k2χ  under the null hypothesis of the 

SETAR(2) model. Otherwise, the distribution of  is not . The distribution is estimated 

by the bootstrap method. If the value of is larger than the critical value of , the 

SETAR(2) model is rejected, and the SETAR(3) model is adopted.  

F 2χ

23F ( )k2χ

 

4.  An Illustration of the Simulated TAR Process 

In this section, we illustrate examples of simulated AR and TAR models that establish the 

characteristics of the TAR models to be compared to an AR model. First, a two-regime TAR 

model is examined, and then a three-regime TAR model. 

 

                                                 
2 The notation of  is the same as that of . 23F 12F
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 The data processes generated from the AR(1) and SETAR(2;1,1)3 models are plotted 

in Figure 1. The AR(1) model is as follows: 

)1.4(7.0 1 ttt yy ε+= − ,  

where the error terms are generated from tε ～ i.i.d.N(0,1). The two-regime TAR 

(SETAR(2;1,1)) model is as follows: 

⎩
⎨
⎧

>++
≤++−

=
−−

−−

0,5.01
0,9.03.0

11

11

ttt

ttt
t yy

yy
y

ε
ε

,     (4.2) 

where tε  is also distributed as i.i.d.N(0,1), and the threshold value is zero. The error terms in 

both the AR(1) and SETAR(2;1,1) models are generated from the same random variable. 

 While the coefficient of  in the SETAR(2;1,1) model is 0.9 in regime 1 

( ), in regime 2 ( ) it is 0.5. The threshold value is zero as mentioned above. 

This means that the speed of return to zero in regime 1 (

1−ty

01 ≤−ty 01 >−ty

01 ≤−ty ) is slow, while that in regime 2 

( ) is fast. As a result, the data process generated from the two-regime TAR model has a 

higher probability of the observations being grouped into regime 1than into regime 2. Moreover, 

we can see from Figure 1 that the data from the SETAR(2;1,1) process are more persistent than 

those from the AR(1) process. 

01 >−ty

 

Figure 1: AR and two-regime TAR processes
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3  SETAR(2;1,1) means that the SETAR model has two regimes, each of which 
constitutes an AR(1) model. 
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 Next, we examine the data generated from a three-regime TAR (SETAR(3;1,1,1)) 

process by comparing it with the data from the AR(1) process. These data are plotted in Figure 

2. The AR(1) model is as follows:  

ttt yy ε+= −15.0      (4.3), 

where the error terms are generated as tε ～ i.i.d.N(0,1). The three-regime TAR 

(SETAR(3;1,1,1)) model is as follows: 

⎪
⎩

⎪
⎨

⎧

>++
≤<−+

−≤++−
=

−−

−−

−−

2,5.01
22,95.0

2,5.01

11

11

11

ttt

ttt

ttt

t

yy
yy

yy
y

ε
ε
ε

,     (4.4) 

where tε  is also distributed as i.i.d.N(0,1), and the threshold values are set to . The error 

terms in both the AR(1) and SETAR(3;1,1,1) models are also generated from the same random 

variable. 

2±

 

Figure 2: AR and three-regime TAR process
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 The coefficient of  in the AR(1) process here is 0.5 and it is less than that in 

Figure 1, whose coefficient is 0.7. It is found that the AR(1) process in Figure 1 is more 

persistent than the AR(1) process in Figure 2. 

1−ty

 In the SETAR(3;1,1,1) model, we set the coefficient parameters on  to 0.5 in 

both regime 1 (

1−ty

21 −≤−ty

ty

) and regime 3 ( ), and to 0.95 in regime 2 ( ). 

When the variable  enters regime 2, it tends to remain in the same regime persistently. On 

21 >−ty 21 ≤−ty2 <−
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the other hand, the process easily tends to come near 2±  in regime 1 or regime 3, because the 

value of the coefficient in  is 0.5. We can easily see that most observations of the SETAR 

model are in regime 2 in Figure 2. 

1−ty

 

5. Empirical Results and the Implications 

5.1 Data and Basic Statistics 

The macroeconomic variables in Japan examined in this paper are listed in Table 1. Composite 

Index (CI) and Cumulated Diffusion Index (DI) are taken as the business cycle index; 

Consumer Price Index (CPI) and Wholesale Price Index (WPI) as the price index; NIKKEI and 

TOPIX as the stock price index; M1 and M2 as money supply; and the return of a 10-year 

Government Bond (LR) as the interest rate. We examine monthly data, because we cannot 

detect nonlinearity from quarterly data. Because the original level values of all variables are not 

stationary, one-month differences of the natural log values are taken for our analysis. There is 

large irregular fluctuation in each variable, because the series are one-month difference, not 

one-year difference. 

 

                      Table 1                                                 

Name       Data                                           from       to             

CI          Composite Index (Coincident Series)             1980:2    2006:8 

DI          Cumulated Diffusion Index (Coincident Series)        1957:1    2006:8 

CPI         Consumer Price Index                             1970:2    2006:8 

WPI        Wholesale Price Index                             1960:2    2006:9 

Nikkei225   Nikkei Average Stock Price                     1951:2    2006:9 

TOPIX      Tosho Stock Price Index                     1955:2    2006:9 

M2          M2+CD Seasonal Adjusted                     1955:2     2006:8 

M1          M1Seasonal Adjusted                             1955:2    2006:8 

10yearbond   Rate of Return on Government Bond (10years)      1985:1    2006:10        

 

 The basic statistics of both the level and difference variables are shown in Table 2. In 

the log difference series, the fluctuations in the stock indices, i.e. NIKKEI and TOPIX, are very 

large, and the stock indices and money supply indices, i.e. M2 and M1, have strong upward 

trends. WPI and LR have higher values of kurtosis, and WPI also has a positive high value of 

skewness. 
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                                   Table 2                                             
 (1) Level                                                                     
 Observations    Mean      Std Dev   Minimum   Maximum   Skewness    Kurtosis     

DI          597      5,731.70     1,980.03   1,070.00      8,393.60     -0.838     -0.447  

CI          320         95.37         8.60      80.50       113.10      0.242     -0.936  

CPI         440         81.28        21.23      31.10       101.80     -1.103     -0.017  

WPI        561         88.09        23.74      48.90       116.10      -0.652     -1.230  

NIKKEI    669      8,966.50      8,744.56     108.48    38,130.00      0.990     0.210  

TOPIX      621        778.02       696.10      30.42     2,859.57      0.730     -0.513  

M2         620   2,762,891.66  2,477,073.35     35,645    7,180,962     0.421     -1.368  

M1         620     985,349.59  1,058,668.96     17,188    3,987,296     1.373     1.063  

LR         262          3.46          1.96      0.47        7.79      0.267     -1.348        

        

 

                                                                                     

(2) Logged first difference                                                        
          Observations    Mean    Std Dev   Minimum   Maximum    Skewness  Kurtosis  

DI            596        0.322     0.998     -4.567      4.567       0.154       5.411  

CI            319        0.082     0.933     -2.534      2.652       -0.194       -0.229  

CPI           439        0.264     0.675     -1.105      4.101       1.644       4.776  

WPI          560        0.128      0.597     -1.032      7.170      4.909       43.493  

NIKKEI       668        0.747     4.569     -18.380     14.972      -0.465       1.508  

TOPIX        620        0.634     4.109     -14.623     13.360      -0.310       0.603  

M2           619         0.857     0.675      -1.612     3.113       -0.020       0.092  

M1           619        0.878     1.455      -7.183     9.405       -0.178       4.772  

LR           261        -0.516    10.464     -52.235     71.940      1.975      16.922  

 

 
5.2 Results for the Linearity Test 

The results for the two-regime TAR model test are presented in Table 3(1). P-values are 

calculated by the bootstrap method. Linearity is rejected for all variables except CI, NIKKEI 

and LR. It turns out that the processes of DI, CPI, WPI, TOPIX, M2, and M1 are subject to the 

TAR model. Therefore, it is suggested that they have limit cycles. 

 The variables, which in the previous test turned out to be subjected to two-regime 

TAR, should be examined, whether they are subject to the two-regime TAR or three-regime 

TAR model. The results of the test as to whether each variable is subject to the two-regime or 

three-regime TAR models are shown in Table 3(2). The null hypothesis in the cases of CPI, 
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WPI and TOPIX is rejected at a 5% significance level, and that of M1 is rejected at a 10% 

significance level. It turns out that many variables are subject to the three-regime TAR model. 

 
Table 3: Linearity tests 

(1) 0H :AR Model vs 1H : Two-regime TAR test 

CI          DI        CPI        WPI     NIKKEI   
P-value      0.223      0.042      0.018       0.001      0.233    
            TOPIX       M2        M1        LR 
P-value      0.016      0.041      0.046       0.554 
 
(2) 0H : Two-regime TAR vs 1H : Three-regime TAR test 

  DI        CPI       WPI     TOPIX     M1       M2  
P-value      0.205      0.045      0.008       0.016    0.112     0.070 
 
* Monthly data are used, and are transformed into log-difference, i.e.

100)}ln(){ln( 1

 
×− −tt yy . P-values are calculated by bootstrap method, considering 

heteroscedasticity when it is observed in the error terms. The lag length is selected by 
BIC criteria. 

 

 

5.3 Some Implications from the Results 

We now discuss some implications of the estimated TAR models for data processes. The 

two-regime TAR estimation results for DI, CPI, WPI, TOPIX, M2 and M1, which turned out to 

be subject to the two-regime TAR model rather than the linear AR model, are presented in 

Table 4. The three-regime estimation results for CPI, WPI, TOPIX and M2, which turned out to 

be subject to the three-regime TAR model, are presented in Table 5. We examine the estimated 

results from the two-regime TAR models on the DI, M1 and M2 data processes, and those from 

the three-regime TAR models on the CPI, WPI, TOPIX and M1 data processes. 
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                   Table4：Two-regime TAR estimates (1) 
                    DI                             CPI 

Regime 1 Regime 2 Regime 1 Regime 2 
541.06 −≤−ty  541.06 −>−ty  803.012 ≤−ty  803.012 >−ty  

iμ  -0.131(0.143) 0.025(0.018) -0.009(0.024) 0.905(0.183) 

1iφ  0.996(0.253)  0.492(0.093)  0.162(0.088)  0.103(0.086) 

2iφ   -0.706(0.302) 0.324(0.083)  -0.181(0.055)  0.050(0.109)  

3iφ  0.651(0.279)  -0.096(0.058)  0.003(0.054) 0.136(0.120) 

4iφ  -0.346(0.242) 0.275(0.052) 0.052(0.065) -0.063(0.096) 

5iφ  0.188(0.203) 0.019(0.050) 0.089(0.051) 0.281(0.095) 

6iφ   0.067(0.133) -0.102(0.048) 0.160(0.051) -0.251(0.105) 

7iφ  -0.526(0.274) 0.046(0.034) 0.022(0.061) 0.305(0.098) 

8iφ  -0.024(0.245) -0.092(0.033) 0.155(0.055) -0.323(0.080) 

9iφ  0.709(0.223) 0.021(0.044) 0.060(0.048) 0.305(0.098) 

10iφ  -0.700(0.240) -0.020(0.040) 0.006(0.055) -0.509(0.107) 

11iφ  ---  ---  0.019(0.044) 0.414(0.098) 

12iφ  ---  ---  0.507(0.069) -0.191(0.133) 

∑
j

ijφ  0.309  0.867  1.054  0.227 

iP  0.123  0.877  0.838  0.162 

iSM  -0.298  -0.444  0.837  1.087 

 
                   WPI                           TOPIX 

Regime 1 Regime 2 Regime 1 Regime 2 
585.02 ≤−ty  585.02 >−ty  562.31 −≤−ty  562.31 −>−ty  

iμ  0.016(0.013) 0.437(0.095) -4.241(1.495) 0.616(0.193) 

1iφ  0.316(0.053) 0.828(0.156) -0.316(0.258) 0.294(0.057) 

2iφ  0.139(0.058) -0.314(0.110) ---  ---  

3iφ  0.085(0.053) 0.085(0.131) ---  --- 

4iφ  0.155(0.045) 0.035(0.119) ---  --- 

∑
j

ijφ  0.695  0.634  -0.316  0.294 

iP  0.895  0.105  0.147  0.853 

iSM  0.423  0.808  -3.115  -0.431 
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Table4：Two-regime TAR estimates(2) 
                    M2                             M1 

Regime 1 Regime 2 Regime 1 Regime 2 
388.13 ≤−ty  388.13 >−ty  099.11 ≤−ty  099.11 >−ty  

iμ  0.030(0.033)  0.746(0.234)  0.426(0.112)  0.628(0.348) 

1iφ  -0.182(0.074)  0.005(0.118)  -0.367(0.092)  -0.248(0.172) 

2iφ  0.060(0.047)  0.253(0.095)  -0.134(0.073)  0.099(0.075)  

3iφ  0.301(0.047)  0.317(0.130)  0.019(0.056)  0.484(0.078) 

4iφ  0.196(0.042)  0.138(0.089)  0.019(0.049)  0.199(0.066) 

5iφ  0.215(0.047)  -0.041(0.101)  0.126(0.048)  0.085(0.054) 

6iφ  0.260(0.050)  -0.092(0.101)  0.205(0.055)  0.039(0.075) 

7iφ  0.084(0.049)  -0.084(0.108)  0.073(0.054)  -0.002(0.065) 

8iφ  ---  ---  -0.027(0.049)  0.025(0.049) 

9iφ  ---  ---  0.112(0.041)  0.010(0.056) 

10iφ  ---  ---  -0.039(0.036)  0.016(0.087) 

11iφ  ---  ---  0.121(0.048)  0.025(0.078) 

12iφ  ---  ---  0.048(0.058)  -0.194(0.074) 

∑
j

ijφ  0.935  0.496  0.156  0.538 

iP   0.790  0.210  0.573  0.427 

iSM  1.328  1.452  0.597  1.219 

 
The standard deviations are shown in parentheses. iP  presents the ratio in each

regime. The estimated models are as follows: 
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where itε  is the error term in each regime. γ  is the threshold value. 

∑×+= ijiiSM φγμ  

  
 In the last row of the estimated results in Table 4 and Table 5, we show the index 

, which takes into account whether the process tends to remain in the same regime or to 

move to another regime. The index is calculated by 

iSM

∑×+= ijiiSM φγμ , where  refers to 

the regime, and 

i

γ  denotes the threshold value. We refer the index to the (Stop-or-Move SM
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Index) below. While the index calculates the total effect from the constant term plus all 

explanatory variables at the average of two threshold values in regime 2 of the three-regime 

TAR model, in the other regimes it calculates the total effect from the constant term plus all 

explanatory variables at the threshold value. When the value of the explained variable is in one 

regime, the index checks whether the process tends to remain in the same regime or to 

move to another regime. 

SM

SM

 We found several patterns in the two-regime TAR model in the processes DI, M2 and 

M1. In the two-regime TAR model, regime 1 covers γ≤−dty , while regime 2 covers 

dty −<γ . The DI process tends to move from regime 1 to regime 2, because the value of  

in regime 1 is –0.298, and is greater than the threshold value, –0.541. Therefore, we guess that 

the DI data in regime 1 tend to move to regime 2. On the other hand, the DI data in regime 2 

tend to remain in the same regime, because the value of  in regime 2 is –0.444, which is 

greater than the threshold value, –0.541. As a consequence, the ratio ( ) that the variable is in 

regime 2 is 88%. The M2 process tends to move to the threshold value in both regime 1 and 

regime 2, because the values of  and  are 1.328 and 1.452, respectively, which are 

almost the same as the threshold value, 1.388. The ratios in regime 1 and regime 2 are almost 

80% and 20%, respectively. Finally, the M1 process tends to remain in the same regime in both 

regimes, because the value of  is 0.597, which is less than the threshold value, 1.1, while 

the value of  is 1.2, which is greater than the threshold value. The ratios in regime 1 and 

regime 2 are 57% and 43%, respectively. Although the process of the three variables is in 

accordance with the two-regime TAR model, the character of each process is different. 

1SM

2SM

iP

1SM

1SM

2SM

2SM

 Although the processes of CPI, WPI, TOPIX and M1 are subject to the three-regime 

TAR model, the pattern of each process differs slightly. The processes of CPI and WPI tend to 

remain in the same regime in all three regimes. The  value of CPI is 0.513, which is 

slightly lower than the smaller threshold value 0.52, the  value is 0.612, which is between 

the smaller threshold value 0.52 and the larger one 0.81, and the  value is 1.13, which is 

greater than the larger threshold value. The  value of WPI is clearly lower than the 

smaller threshold value, the  value is between two threshold value, and the  value 

is greater than the larger threshold value. On the other hand, the TOPIX process tends to move 

from regime 2 to regime 1, because the  value is –0.296, which is in regime 2, while the 

data in regime 3 tend to remain in regime 3. The M1 process tends to move strongly from 

1SM

2SM

3SM

1SM

2 3SM

1SM

SM
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regime 1 to regime 2. Therefore, we conclude that M1 is generated by the two-regime TAR 

model, although the process is rejected against the two-regime TAR model at a 10% 

significance level. As stated above, the character of each process in the three-regime TAR 

model also differs from that of the others4. 

 

 

                  Table 5：Three-regime TAR estimates(1) 
                                  CPI 

Regime 1  Regime 2  Regime 3          
520.012 ≤−ty   808.0520.0 12 ≤< −ty  808.012 >−ty         

iμ  0.003(0.021)   -0.239(0.799)  0.958(0.191)         

1iφ  0.081(0.060)   0.496(0.238)   0.113(0.088)         

2iφ  -0.175(0.061)   -0.171(0.211)  0.014(0.107)         

3iφ  0.021(0.055)   -0.118(0.105)   0.141(0.118)       

4iφ  -0.031(0.049)   0.449(0.195)   -0.077(0.097)        

5iφ  0.103(0.052)   0.011(0.112)  0.316(0.094)        

6iφ  0.088(0.051)   0.541(0.111)   -0.285(0.103)        

7iφ  0.070(0.051)   -0.260(0.181)   0.280(0.088)         

8iφ  0.138(0.055)   0.099(0.126)   -0.343(0.080)        

9iφ  0.081(0.054)   -0.048(0.112)   0.309(0.094)         

10iφ  0.018(0.047)   0.024(0.124)   -0.464(0.113)          

11iφ  0.056(0.051)   -0.189(0.099)   0.426(0.098)          

12iφ  0.531(0.071)   0.448(1.149)   -0.216(0.132)          

∑
j

ijφ
 

0.981   1.282   0.214 

iP   0.742   0.101   0.157 

iSM  0.513   0.612   1.131 

  
 

                                                 
4 There would be a few economic factors to be related to the behaviour of the processes 
to be examined in this paper. As comments at JEPA conference, T. Matsuki at Osaka 
Gakuin University pointed out mean shifts in M2, and sudden jumps in CPI and WPI as 
the factors. We appreciate his excellent comments and suggestions. We will need to 
carefully examine the relationship in our next paper. 
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                                  WPI 

Regime 1  Regime 2  Regime 3          
096.02 ≤−ty   588.0096.0 2 ≤< −ty  588.02 >−ty      

iμ  -0.014(0.017)   0.186(0.081)   0.443(0.098)         

1iφ  0.294(0.060)   0.396(0.238)   0.829(0.156)         

2iφ  0.058(0.076)   -0.394(0.245)   -0.316(0.110)         

3iφ  0.087(0.062)   0.095(0.083)   0.086(0.131)       

4iφ  0.108(0.056)   0.199(0.066)   0.033(0.119)              

∑
j

ijφ
 

0.547   0.296   0.632 

iP  0.633   0.264   0.103 

iSM  0.039   0.287   0.815 

  
 

                  Table 5：Three-regime TAR estimates(2) 
                                TOPIX 

Regime 1  Regime 2  Regime 3          
505.31 −≤−ty   069.0505.3 1 −≤<− −ty  069.01 −>−ty         

iμ  -4.703(1.446)   -0.483(0.501)   0.993(0.318)         

1iφ  -0.296(0.252)   -0.258(0.316)   0.222(0.084)          

∑
j

ijφ  -0.296   -0.258   0.222 

iP  0.153   0.268   0.579 

iSM  -3.666   -0.468   0.978 
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                                 M1 

Regime 1  Regime 2  Regime 3          
231.01 −≤−ty   096.1231.0 1 ≤<− −ty  096.11 >−ty         

iμ  0.166(0.258)   0.534(0.153)   0.627(0.347)         

1iφ  -0.550(0.148)   -0.233(0.223)   -0.247(0.171)         

2iφ  -0.178(0.109)   -0.146(0.095)   0.099(0.075)         

3iφ  0.108(0.072)   -0.050(0.066)   0.484(0.078)       

4iφ  0.124(0.055)   -0.113(0.075)   0.200(0.066)        

5iφ  0.130(0.068)   0.164(0.061)   0.085(0.054)        

6iφ  0.032(0.061)   0.296(0.084)   0.040(0.074)        

7iφ  0.082(0.049)   0.095(0.082)   -0.001(0.065)         

8iφ  -0.143(0.085)   0.027(0.055)   0.025(0.050)        

9iφ  0.093(0.062)   0.099(0.049)   0.011(0.056)         

10iφ  -0.042(0.049)   -0.073(0.046)   0.016(0.087)          

11iφ  0.094(0.083)   0.134(0.047)   0.025(0.077)          

12iφ  0.285(0.091)   -0.082(0.056)  -0.195(0.073)          

∑
j

ijφ  0.035   0.118   0.542 

iP  0.166   0.405   0.429 

iSM  0.158   0.585   1.221 

  

The estimated models are as follows: 
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where 1γ  and 2γ  are threshold values.  

∑×+= ijiiSM φγμ ,where ( )
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6. Conclusions 

In this paper, we examined whether macroeconomic variables in Japan have limit cycles, and 

are therefore subject to TAR models, by testing the linearity. We found that six of the nine 

series are subject to TAR models, and that there are limit cycles in their Japanese 

macroeconomic variables. The results indicate that the behaviour of these variables is generated 

by endogenous business cycle theory, and this implies that the government could control the 

business cycle in Japan, even though the cyclical behaviour is extremely complicated. 

 We also tested whether the processes of the variables, which are rejected for linearity, 

follow the two-regime or three-regime TAR models. As a result of the test, we conclude that 

CPI, WPI and TOPIX follow the three-regime TAR model. We may also have found that each 

process has a unique behaviour. 
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